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Response function of an irregular oscillator
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Properties of the response functions for a two-dimensional quartic oscillator are studied based on the
diagonalization of the Hamiltonian in a large model space. In particular, response functions corresponding to
a given momentum transfer are studied for different values of the coupling parameter in the Hamiltonian. The
latter controls regular or chaotic nature of the spectra and eigenstates of the system. Fluctuation properties of
the energy-strength correlation of the response are investigated. Even when the statistical properties of the
system indicate an almost completely chaotic character, there remains a typical structure in the response
function similar to that in the regular system. The nature of this structure is studied in some detail.
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[. INTRODUCTION diagonalization and calculating response functions for the
operators which probe the system with a variable wave-
Quantum-mechanical manifestations of dynamical propertength, or momentum transfer. In particular, we put an em-
ties of a system which classically possesses a chaotic chaphasis on which aspect of the response function reflects the
acter have been intensively studigt,2]. Level statistics regular or the chaotic character of the system. We also would
which has a long history in nuclear physics as described byke to study a structure in the response function for a system
the random-matrix theory3,4] is now a favorable play- na chaotic regime which however is not expected to occur
ground in the discussion of a transition from a reguiate-  in the statistical random-matrix theory. Although we are here
grable to a chaotic character of a quantum system. Togethegoncerned with the properties of response functions which
with numerical studies on model systems, analytic investigasShow up in a model system, they will also be interesting in
tion has been made based on semiclassical trace foflLla realistic applications, as this response is similar to the exci-
Wave functions of a system which is classically chaotic havdation cross section for, e.g., electron scattering in the plane-
also been investigated: Statistical theory predicts that the anyvave Born approximation. Thus it is hoped that the present
plitude distributions show the Porter-Thomas distributionstudy may provide insight into the understanding of collec-
[6], which was then numerically demonstrated to hold fortive st_ates such as nu_clear giant resonances embec_ided_ in
model chaotic systems. Contrary to the naive expectatioriomplicated many-particle many-hole states as studied in
however, the profile of the wave function for a chaotic sys-nuclear reactions.
tem is not entirely structureless: For instance, the Husimi The main content of the paper is as follows: In the next
representation of a wave function in the chaotic regime freSection we summarize classical and quantum-mechanical
quent|y suffers from ascar of classical periodic Orb|t$7] propel’ties of the model Hamiltonian and fix values of the
Although considerable progress has since been made, it [§levant parameters. In Sec. Ill we study response functions
still an important issue to clarify the characteristic of eigen-first for a long-wavelength probe, and then for the probe
states and its matrix elements for systems which are classgharacterized by a given momentum transfer. We study the
cally irregular or chaotic. fluctuation properties of the response functions, concentrat-
It is the purpose of the present paper to study anotheing especially on the similarity or the difference for the regu-
aspect of the wave functions for a system which shows dar and the chaotic systems. The accuracy of the calculation
transition from an integrable to a chaotic character: We study)@s been checked against sum rules. The final section is de-
response functions of the system, i.e., transition-matrix elevoted to a summary.
ments as a function of energy. Statistical properties of the
distribution of transition-matrix elements have been studied Il. BASIC INGREDIENTS OF THE MODEL
[8-10], and it was shown, in particular, that the distribution _
becomes a Porter-Thomas type for chaotic systems. The ap- N order to study the response functions for a system
proach proposed in Ref10] has since been developed to Wh.ICh is capable of showm_g regula_r as _weII as chaotic prop-
elucidate the role of periodic orbits and was extended tg'ties, we adopt the following Hamiltonian as a model,
various systems including the response of mesoscopic sys- 1 1
tems to realistic probgd1-14. These studies are based on T2 n2) i A U ey2y2
the semiclassical framework, and focus mainly on the re- H 2(px+py)+ 2(X Ty kcy”. @
sponses to long-wavelength probes. Semiclassical studies of
response functions have also been done in a different framé&-his model Hamiltonian has been adopted by a number of
work [15], which concentrate on their smooth behavior butauthors for the studies of level statistics or wave functions
not much on fluctuations. [16-20. It was also employed as a model for a background
In this paper, we study a model system using a large spacgystem in the studies of the fluctuation properties of strength
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functions[21]. Let us first briefly summarize classical prop- the selection rule, the relevant part of the operator which
erties of the model, which have been studied in detail bycontributes to the matrix element of the response should have
Meyer[17]. The Hamiltonian1) possesses a dynamical scal- the definite symmetry property. It should be noted that
ing property in the sense that the classical phase-space strummong the 5776 wave functions of the cléss those having
ture at one energy is mapped into another by a simple scalingery large energies are not quite reliable because of the limi-
of the coordinates and momenta. It has a high symmetryation in the basis states. This is especially so when the re-
called C,, : The Hamiltonian is invariant with respect to a sponse functions with large momentum trangjeare con-
reflection about the axis, y axis, and also about the line  cerned. We may make an estimate for the range of validity
=y. Furthermore, by rotating 45° in the-y plane, the by comparing the obtained level density with the semiclassi-
Hamiltonian is mapped into the one with a coupling constantal one. The comparison suggests that the maximum reliable
k’=—(3+Kk)/(1—k). As the system becomes unboundedenergy iSE=1000-1500, depending on the values of the
from below fork>1, we have only to consider the range parametek in Eq. (1). This maximum energy is contrasted

[ —1,1] for the coupling constark. Meyer[17] showed that with the largest energy eigenval@e=3000 obtained by the

for largek values &0.4) the classical phase-space structurediagonalization. This limits the maximum value of the mo-
is almost completely chaotic, while for smallthe system mentum transfer of the probe adopted below to be around
becomes regular. In the following calculations we adopt twoq=50, where the corresponding “quasielastic peak” lies
typical values of the parametéd=0.2 and 0.6. They corre- aroundg ¢ = q%/2=1250. This is confirmed by the calcula-
spond to quasi-integrable and fully chaotic systems, respedion as shown later.

tively. For instance, fok=0.6 a single trajectory fills up

almost 90% of the available phase space, whilekfer0.2 IIl. RESPONSE EUNCTIONS
the fraction of the phase space covered by irregular orbits is ) ) )
only 25% in typical casefl7]. We consider the response functions defined by
To study quantum-mechanical properties of the eigen-
states of the Hamiltonial), we follow the procedure essen- W(i)(Q)Ezj: i |Q|i>|25(ﬂ— (E;—ED), 3)

tially of Zimmermanet al. [18]: The Hamiltonian is diago-

nalized within a truncated model space spanned by a set of

suitable harmonic-oscillator basgs,,n,), wheren, ,n, de- whereQ denotes a probing operator which connects the ini-
note the numbers of oscillator quanta in th@ndy direc-  tial and the final eigenstatds) and|j). In many cases of
tions. In the following we take the unti=1. The frequency interest, the initial stat¢i) is set to the ground state of the
o, of the harmonic-oscillator basis is determined so as taystem|g.s) which belongs to theA; symmetry class, in
minimize tH in the adopted model space. The obtained valwhich case the index) is dropped. The response function

ues ofwy are 7.51k=0.2) and 7.1%=0.6). The Hamil- shows the distribution of the sta®|i) over the energy
tonian matrix can be decomposed into submatrices due to ”’@genstatesﬂj)}. If, for instance, the initial statéi) has a
Cy, symmetry. As in Refl19] we take up four classes of the simple structure as in the ground state of the harmonic oscil-

one-dimensional re_presentat_|on which are "'?‘be'ed aﬁ‘ator, the stateQ|i) and the response function will simply
A.,A,,B;,B, according to their symmetry properties under A ,
reflect the structure of the probe opera@r We consider

reflection on the axes and diagonals in theg plane[17]. A
(For instanceA; is symmetric under both reflectionsThe ~ operators depending only on a single variable, safo see
model space is spanned by the bases witnQ+ n, <300, how the irregular behavior of the wave functions controlled
which gives the dimension of each of the submatrices a¥y the parametek may be reflected in the response function.
5776,5625,5700,5700. The diagonalization has been pefne may rewrite the response functi@ in the form of the
formed for each submatrix. Study of the nearest-neighbotime-correlation function

spacing distribution confirms the character of the system 1

suggested by the classical phase-space structures, i.e., the (i) :_fm 0t AN TOS _
Poisson-like distribution fok=0.2 and the Wigner distribu- WHEE) 2m ,mdt eHQGMY QRO ()
tion for k=0.6 within each symmetry class. We also con-

firmed that the amplitude distribution of the wave functionswhere(); denotes the expectation value in the initial state
for k=0.6 show the Porter-Thomas distribution except for aThe probe@ is written as a function of the operator
singular peak at zero.

In the following the results of the calculation will be x(t)=exe M=x+p,t— (B3—kxg2)t2+---, (5
shown for the states which belong to the symmetry chass
The results are similar for other symmetry classes. which is the solution of the Heisenberg equation of motion.
The basis statén;,n,)gs belonging to the clas#; is In Eq. (5) we show also a short time expansion in terms of
written as the operators at=0, e.g.,X(0)=X. A corresponding semi-

classical expression for E¢4) has been fully utilized in the

1+ 65, analysis of Refs[10—14.
In1nR)es= \ —5—(Inunz)+nz.ng)), - () It is generally believed that the universal behavior of a

dynamical system, i.e., if it is regular or chaotic, emerges in
wheren,; andn, are even integers anth<n,. Because of the fluctuation properties of the matrix elements of the op-
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(a) k=0.2 (i=500) (b) k=0.6 (i=500)
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FIG. 1. Response to the proBé for the ini-
o @ tial state|i =500 as a function of the enerdyin
% z 1 log scale fork=0.2 (a) and 0.6(b). Tics at the
upper part indicate positions of the energy eigen-
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erators, while their expectation values are strongly dependent  _ | 1 . . . .

on the specific dynamics of the system. Although the — Q=(Q)a,=7[QX)+Q(=X)+Q(¥)+Q(=9], (7)
transition-matrix elements for a chaotic system are known to

generically follow the Porter-Thomas distribution, the o .

energy-strength correlation such as the one contained in réthere the arguments are explicitly written to show the de-
sponse functions is certainly dependent on the specific progendence on the coordinates. For the initial sfétein the
erties of the dynamics governed by the Hamiltonian. In thisclassA; this implies that in Eq(3) only the stateg belong-
latter respect we note that the shape of the response functidid to theA; symmetry class contribute.

versus energy is constrained by a number of sum @2k

Let us define A. Response to thex? probe

We first study the response function for tk& probe. A
a7 i _ M TATN (2 typical example of the response to this probe is given in Fig.
Sﬁ)(Q)_f_wdQQ W()(Q)_; (B —ED"GIQI] 1. Here we show the respons®)(Q=E—E;) for the i
(6) =500th initial state as a function of the energyfor k
=0.2 and 0.6. For other initial states the main features are
R similar. We immediately see that the response consists of
for a given operatoQ. The integem may in general take three clusters of strengths for bdtl 0.2 and 0.6: the largest
negative valuegusually fori=g.s. andj#g.s.), in which  strength lies aE=E; with almost no other strength close to
case the sum rule corresponds to the generalized susceptibihis peak, while two other clusters are located arond
ity of the system. By increasing the valuemfnd subtract- =E;+ A, whereA is slightly less than @,, the expected
ing the lower moments, e.g., in the form of the shifted mo-value for a simple harmonic oscillator. Fd=0.2, the
ment or of the cumulant, one can regain finer and finestrengths are concentrated on a few states, while strengths
structure of the response function. Although one may recovesre distributed over some energy range Ker0.6. We now
the response functions by Mellin-transforming the sum ruleintroduce creation and annihilation operatads, a,, etc.,

values, the use of sum rules lies in the fact that in some caseg the oscillator quanta with frequenay,, and decompose
the sum becomes a simple matrix element in the initial statene operato®? as

The latter may be calculated precisely and serves as a check
for the accuracy of the calculation. The lawsum rules, in
particular, sometimes become insensitive to the detailed dy-

1
%?=Do+D}+Dy; Do=5—(Ax+Ay+1),
w
namics and constrain the gross behavior of the response °

functions.
As a probeQ of the response we first consider the opera- Di= 1 (al?+al?). ®)
tor %2 with an arbitrary initial statei). We then fix |i) 2 4we Y

=|g.s) and adopt the operat(fDquiqs‘ which is closely

related to an excitation of the system by an external prob®ne may then be tempted to assign fhe E; peak to the
characterized by momentum transfgr(and length scale response to the operat@r,, and two other clusters around
1/q). The operatok® may be regarded as a long-wavelengthE =, = A to the operator®} andD, respectively. Figures
part onq, and is similar to thde2 operator of electromag- 2(a) and 2b) show the response to the operafy for k
netic transitions. By changing the value®fn Q,, one can  =0.2 and 0.6, respectively. Although the staxgli) is not

study in principle long as well as short distance structure ofroportional toli), the fragmentation of the strength is re-
the matrix elements. stricted to only a few states in both cases. More important is

In the actual calculation we consider only the operatorghe mixing in the stat®J|i). Figures 2c) and 2d) show the
symmetric under the reflection aboxtandy axes and also response to the operatDrE for the i=500th state. The dis-
about the linex=y, i.e., tribution of strengths is considerably different betwden
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(a) k=0.2 Dy (i=500) (b) k=0.6 Dy (i=500)
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e e FIG. 2. Response to the operatdy for the
initial state|i =500 as a function of the enerdy
) ) in log scale fork=0.2(a) and 0.6(b), and the one
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=0.2 andk=0.6 cases. Strengths fke=0.2 are seen to con- and decreases as the energy increases. General trend is not
centrate on a few states, while those kst 0.6 are distrib- much different fork=0.2 andk=0.6. The situation is dras-
uted over many states. tically different if we study the NPC for the stallayi}

The above features may be quantified by studying thgagain normalizetas seen in Fig. 4. Fdk=0.2, the NPC
number of principal componentslPC). The NPC for a nor-  remains small and does not show a marked energy depen-
malized stat¢a) in terms of a complete set of orthonormal- dence, while fok= 0.6, the NPC shows a rapid increase as a
ized stateq|j)} is defined as function of energy and takes a quite large value. We thus

. find that theD,(D,) part of the operatdk? is sensitive(in-
N(a)E(E «j |a>)4> _ (9) sensitive to the characteristic changes in the dynamics gov-
pe 7 erned by the parametér
There is another measure to see the difference between
The NPC becomes unity when the strengths are concentrateélde two casesk=0.2 andk=0.6, which can be obtained
in a single eigenstate, while beconég, when the strengths from the response function associated ith In Fig. 5 the
are equally distributed over the wha, eigenstates. Fig- fraction of strengthgomitting the one folE=E;) exhausted
ure 3 shows the NPC of the sta|i) (with a suitable by two major states carrying largest strengths for each initial
normalization for each eigenstatd) as a function ofg;, state|i) is plotted againsE; . Fork=0.2 more than 60% of
where the sef|j)} has been taken to be the eigenstate of thehe total strengths is exhausted by the two major states and
Hamiltonian. The NPC takes values-1.5 in most cases the distribution of the fraction is almost independent of the

(a) k=0.2 D, (b) k=0.6 D
4 4
3.5 3.5
3 3

FIG. 3. The NPON() for the stateD,|i) as a
function of the energy of the initial eigensteie
for k=0.2 (a) and 0.6(b).

T T T T T T 0 T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
E E
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(a) k=0.2 D,* (b) k=0.6 D,*
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initial energyE;, while for k=0.6 they carry less than 50% n!
and this fraction decreases as a function of the initial state Qpm(q) =i “e(!/22z(1/2)« mLﬁ(z) (m=n),
energy. Since the dominant part of the strength associated ' (10)

with the operatoD, is contained in the initial staé) and is
omitted here, Fig. 5 shows the characteristics for the ®Where a=m—n, z=q2/2w, and L%(z) denotes the associ-

: : :
sponse to the operat@, (and D) in accordance with the 4ioq Laguerre polynomial. The functiof,(q) are calcu-
results from NPC. . _ lated from recursion relations.

These studies imply that it depend; strongly on the choice \ye consider severaj values corresponding to different
of the probe whether the difference in the character of thgegoution of the probe, the smajllimit being related to the
dynamics, namely _regular or chaotic, may be eaglly seen ifhng.wavelength prob&? above. On the other hand, for
the response function. In the present case, the olzlffergznce lBrge q values the operator resolves a fine structure of the
the dynamics is not apparent for the EVOB?NX_ *TPx:  system and the main strength of the response lies at high
while it becomes quite significant f@,~x“—pj whichis a  energies. If we use the short-time expansion in Gyat this

probe, in a sense, orthogonal to the unperturbed oscillatqgighﬂ region, we can rewrite Ed4) for the probed, using
Hamiltonian ~D,. The response function for the pro&é the Baker-Campbell-Hausdorff formula as q

shows both characteristics.

1 o O
B. Response to the probe), W(q,Q)zzf dt @@l gmiapds -y 1 (11)

We now consider the response function f@gz e' We o
fix here the initial state to be the ground state. In this case th&here the dots denote operators with higher powets TBfie

response is closely related to the situation of physical intereXPression shows that the response is peaked at the quasi-
such as the inelastic electron scattering from the target in th@lastic energyg”/2 and has a width increasing withand
ground state, wherg gives the momentum transfer on the With, €.g., the momentum spread in the ground state. This
target. The symmetrized probe fd@, is given by Q, ?oor:?zfn p\:\fhci:zeihrq for a simple harmonic-oscillator Hamil-
A 1ya0% a—i0%e aiGY 1 o , le ir general is modified by anharmonicity ef-
=(Qg)a, =z (e +e W+eW+e ™). The response func- focts The limiting form of response at largéhas been used
tionsW(q,QQ=E—Ey) (for Qq) andW(q,Q) (for Qq) are to extract momentum distribution of complex system in
calculated in terms of the elementary matrix elementerms ofy-scaling analysi§23]. In our case, as noted earlier,
Qnm(@)=(n|e'%%m) for a one-dimensional harmonic oscil- the model space of diagonalization limits the value cof
lator between the states with quamtandm, which is given  around 50 with the corresponding limit1/q in the resolu-

by tion of the wave function. This is much smaller than the

(a) k=0.2 100 (b) k=0.6

80+ 80...

FIG. 5. The fraction of th&? strengthgomit-
ting the one forE=E;) carried by the two major
states to the total strengths is plotted for each
initial state|i) as a function of the initial-state
energyE; .

60 60

%
%

401 404

20 20

0 200 400 800 800
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(a)k=0.2 g=10 (b) k=0.6 q=10
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0.06 - 0.03
& 0.05- @ 0.025
g 0.041 g 0.02;
0.03 0.015 1
0.02 - 0.01 1
0.01 1 0.005 h ’
0 Lo, . . 0 e .
0 50 100 150 200 0 50 100 150 200
E E
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o 0-024 & 0008+ FIG. 6. Response functioW(q,E) for k
o g =0.2 atq=10 (a), 30 (c), and 50(e) and fork
£ 0.0151 = 0.006
=0.6 atq=10 (b), 30 (d), and 50(f). Note the
0.01 4 0.004 - changes in the scale of the vertical axis.
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length parameter Yk, of our oscillator basis. For the quar- ity calculated to give Sy=1,S,=2%0?, S,=1q?(q?
tic oscillator the length scale will be modified from the +3Eg), etc., where the last sum rule is obtained from the
simple oscillator value. One may define the characteristigjrial theorem. For the symmetric probe the suS
i — o2 1/2 ~

length scale in the g[ciund state By=((9.s|%*(g.s)) ™" =39(Q,) is not analytically obtained but is given by the
Calculated values of, ; are 1.64 fork=0.2 and 1.57 for expectation values as
k=0.6. Thus the operator at, say=20, probes already a
fairly fine structure of the system compared with the length 1
scale of the ground state. The fact that the s@jfg.s) has So=7([1+cosq(x+§)][1+cosq(X—F) ])gs.
an oscillation length scaledAlso explains the occurrence of
the quasielastic peak: The typical oscillation length scale of 1
the harmonic-oscillator wave function at eneffgy-nw, is B = q2(2—cos [X— cos A etc 12
V(x?)In~1/JE which becomes~1/q in the region E 1=169 ¢ & AY)gs. ete. (12
~q?/2. Thus, the statéq|g.s> will have the largest overlap ' o
with the states in the quasielastic region producing a peak iff is useful to consider the limiting values for—0 or :
the response.

Let us now consider the sum rules. Lowalues of the ~

~ 1
- - T aMR24 02 -
sum S,=S(Q,) for the unsymmetrized probe are explic- So—1 S g XA Ygs: for -0, (19
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(@) k=0.2 q=30 {b) k=0.6 q=30

400 70

350 604 ]

3001 50,

2504 FIG. 7. Strength distributiorP(SY?) of the
£ 500 . matrix elementS=|(j|Qqg.s)|? at =30 for k
2 2 30 =0.2(a) and 0.6(b). Strengths are normalized as

1507 Eg. (16). Dashed line shows the Porter-Thomas

distribution.

1004 201

50| 101

- 1 1 for the two cases. Fd=0.2 the response has a rather simple
So— 7 31—>§CI21 for q—oo, (14 regular structure: a=30, for instance, the response is a

superposition of a few structures with different sizes, each of
which is centered around?/2=450 and is similar to the

where the values aj— <o are obtained under the assumption response of a harmonic oscillator given by

that the wavelength @&/ is much smaller than the typical
length scale of the ground-state wave function. These values q? 1

are used to check the accuracy of the calculation within ourWng(q,Q2)= >, 8(Q—nawo)f, g) fn(2)= n—,Znefz-
model space, especially the one at laggghich requires the " 0 ' (15)
matrix elements Eq10) with largen. Note that these values

are almost independent & and the numerical calculation |n fact, by inspecting the wave functions one finds that these
confirms that thé& dependence is small indeed. It turned outstructures are related to the strong transition-matrix elements
that the limiting values(14) for the sum rule are satisfied of uncoupled(i.e., k=0) quartic oscillators which are inte-
already atg=10. In view of Eq.(12) this result implies that  grable. In contrast, fok=0.6 the simple structure disappears
the ground-state expectation values of gsetc., are almost  and the values of the strength change drastically from one
zero, i.e., the resolution af=10 is already sufficiently fine state to the other, although one can still see evep=a60 a

for the ground state in accordance with the estimate giveRtructure of the regularly spaced spikes as seet$00.2.
above. For highen values the dependence 8f on k is For chaotic systems such as represented by random-
expected to become larger. Thus the gross structure of thmatrix theories, the amplitude distribution of wave functions

response such as the total stren§thand average energy Of the matrix element distribution of an operator is known to

S, /S, is rather insensitive to the values kfDetailed struc- follow the Porter-Thomas distribution. This may be con-

lated to hiah val 2 should refl he d trasted to regular systems, where in many cases the quantum
}gée related to high values ofS, should reflect the dynam-  ,;per imposes a selection rule of allowed transitions. Our

- result of response functions is in accordance with this ge-
Figure 6 shows the response functidf{q,(2) atq=10, neric behavior as far as the energy-strengths correlation is

30 and 50. The gross structures at a gigeare similar for  disregarded. In Fig. 7 we show the strength distribution of

bothk=0.2 and 0.6, and follow the behavior suggested earthe response function fok=0.2 and 0.6 ag=30. Fork

lier in this section: Not only the central energy follows  =0.6 the distribution follows the Porter-Thomas form given

=g?%/2 but the width of the response increases almost linpy the dashed line and is quite different from that for

early withg. This should come out exactly from the sum rule =2,

if one had employed an unsymmetrized pro@g. Fine The question then arises: What is the nature of the per-

structure of the response, on the other hand, is quite differersisting regular structure in the response functions of Fig. 6

(a) k=0.2 q=30 (b) k=0.6 q=30
0.06 0.025
0.05 - 0.02
0.04 -
0.015 . .

T 03 o FIG. 8. The normalized response function Eq.
;5 ;5 0.01 1 (16) atq=30 fork=0.2(a) and 0.6(b). Compare
0.02 1 with the responses af=30 shown in Fig. 6.

0.014 0.005
0||"."".||'|.| . 0 ‘
350 400 450 500 550 350 400 450 500 550
E E
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(@) k=0.2 =30 {b) k=0.6 g=30
a10® 4x10°°
. 3x10° ) ] ]
6x107 1 FIG. 9. Smoothed correlation functic®( i)
= = . for the normalized response function to the probe
O 4x10° 1 G 2107 Q, with g=30 as a function of the level number
displacementsi for k=0.2 (@) and 0.6 (b).
2x10° 10°4 Smoothing widthAi =4 is adopted.
0 . . . 0 . ; ;
0 50 100 150 200 0 50 100 150 200
8i 8i

for k=0.6. This structure becomes more visible if one intro- To understand why there still remains the intermediate

duces a normalized response function defined by structure even in the chaotic case, let us investigate the na-
ture of the peak levels in some detail. We first pick up the
W(q,Q)— peak levels carrying the largest strength among neighboring
Whormalized 9, () = mp(ﬂ)v (1) Jevels in the response function. Fox 0.2 the assignment of

peak levels can be done without difficulty, while fioe= 0.6
here may be an ambiguity. The qualitative results of the
nbollowing analysis are, however, independent of this ambi-
uity.
We first studied the NPC'’s of these peak levels in terms
the basis statds.e.,|j)=|ny,n,)esin Eq. (2)], and found
Yhat they are markedly smaller than NPC’s for other levels.
Yfis implies that the mixing of the basis states in these peak
levels is smaller than other states. The nature of the peak
fevels may become clear from Fig. 10, where we plot the
guantity

whereW andp are, respectively, the response and the Ievet
density smoothed over energies. For the smoothing we e
ployed the method of Strutinskj24] with the smoothing
width of 20. This normalization procedure removes the grosgc
structure effect of the response as constrained by the lo
order sum rules and enhances the embedded fine struct
[21]. Figure 8 shows the normalized responsekfer0.2 and
0.6. They show that the strengths in the regular spikes fo
k= 0.2 are mostly redistributed fée= 0.6 to produce smaller
and smaller strengths to fill up the background, although on
can still see the equidistant structure. The latter may be _
called an intermediate structure following RéR5]. This AD=(i| A=Ay l/(A,+ 1)) (19
energy-strength correlation in the response function has been
washed out in the strength distribution.

The presence of an intermediate structure can be detect
also in the response correlation functiGe) defined by

Here, black points correspond to the peak levels and bars
icate the average values over neighboring levels. Kor
=0.2, the values 04\51') for peak levels are nearly 0.9, almost
twice of those for other levels. Fér=0.6, although it is not
C(e)zf dE W(q,E)W(q,E+€). (17) so evident as fok= 0.2, the values for peak levels are larger
than the average. These facts strongly indicate that the peak
evels are associated with the basis states of the type
0,M)gs, although considerably affected by the mixing with
other states fok=0.6. In fact, these basis states are the only

states excited by the prolii}q for a simple oscillator Hamil-
tonian.
Cired €)= E d(e—(n"—nwo)fn(2)fn(2) We may study the above results from the opposite direc-
mn tion. In Fig. 11 we show the NPC of E@9) for the basis
:f_eietezz(l—coSwot) 19 sHtate'|a>'E|nl,n2)ES by taking the eigenstateb} of the
2 ' amiltonian for the state§) in Eq. (9). The abscissa is the
basis number, and the basis state typ@m).s is denoted
with z=q%/2w, andf,, of Eq. (15). Figure 9 shows the cor- by crosses. For botk values the basis states of the type
relation function for the response functiongt30. In the  |0/m)es have the smallest NPC values, which shows that
actual calculation we used the normalized response functioffiese basis states have the smallest spreading width caused
(16) in order to remove the gross Shape effect and used th@y the mixing with other basis states. Thus the fact that there
level number displacement instead of the energy displace- remains an intermediate structure in the response function
mente. The resultant correlation function was then smoothednay be restated in the doorway state pic{i#@]: The probe
with a smoothing widthdi =4. We find the oscillator pattern Q, excites first the doorway stat¢®,m)gs which will then
arising from the intermediate structure in the response funcmix with other states causing the spreading of the strengths.
tion for bothk=0.2 and 0.6. As the spreading width for these specific states are smaller

For equidistant structures such as the one for the free r%
sponseg(15), the correlation function gives again the regular
pattern with the same spacing, e.g.,
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(@) k=0.2 g=30 (b) k=0.6 q=30
0.9 e e 0.9
0.8- 0.8-
0.71 0.7
061 061 S FIG. 10. The quantitA$) for k=0.2 (a) and
S z'i' - % z'j' _ o 0.6 (b). Black points denote the peak levels for
’ ’ the probeQ, with =30 and bars show the av-
031 031 erage over neighboring levels.
0.2 0.2+
0.1 0.1
0 ; ; ; 0 ; ; ;
350 400 450 500 550 350 400 450 500 550
E E
than the level spacing between the doorway states, the inter- IV. SUMMARY

mediate structure emerges even in the chaotic case.

Since the statef,m)cs may correspond to the classical In this paper we studied properties of the response func-

isolated periodic orbits along theandy axis, the relation tions for a coupled quartic oscillator with several probes with

between the intermediate structure in the response functiof) SPecial attention to the difference between the regular and
and the scaf7] may be an interesting problem. Suppose thatN€ chaotic cases. A

an initial wave packeli(0)) is located at some point of the __AS a first example, we took the response to the prigbe
closed orbit having the perioBl. The wave packet will then Since the response function is determined by the probe as
semiclassically evolve along the closed orbit and will returnwell as the nature of the wave functions of the system, we
to the initial position at each time interval Accordingly, ~Mmust pay attention also to the character of the probe. For
the overlap of the wave packet at tirhwith the initial wave  instance, the operators for which the diagonal matrix element
packet|{ (0)|#(t))| will have peaks at=nT, wherenis  becomes a main component are not adequate to see the dif-
an integer. The value of these peaks will decay due to théerence of the dynamics. For the operafdy it can be de-
instability of the closed orbit like exp{\/2t), whereN de- composed like Eq(8), and the operatdd, has such a char-
notes the Lyapunov exponent of the closed ofBJt Taking  acter, while for the operator®} and D, the nondiagonal

the statqu|g.s} as the initial wave packetp(0)), the re- matrix elements are important. Therefore, by removing the
sponse function is nothing but the Fourier transform of thestrengths associated with the operalzg we can see the
overlap|(#(0)|¢(t))|. Therefore, the intermediate structure difference of the response between the chaotic and the regu-
with peak level spacin@® =2/T and the spreading width |ar cases, namely more spreading of strengths for the chaotic
of the peaksy=\ may emerge in the response function if the case, which can be quantified with the number of principal
condition /D=1 is satisfied. In the present model, the pe-components.

riod of the closed orbits along the anq y axes does not Next, we considered the response to the pr@gec gid%.
depend on the parametek and is given by T  The response function at a given momentum trangfes
=(1\2m)I'($)?=5.24 at E=1/2. Numerical calculation related to the time-correlation function of the operator with a
also shows that the Lyapunov exponents for these closessolution 14 in the coordinate space. It was shown that the
orbits atE=1/2 areN=0.53, and 0.92 fok=0.2 and 0.6, gross structure of the response function is similar for the
respectively. The values of/D are then given by 0.44 and chaotic and the regular cases as constrained by global sum
0.77 fork=0.2 and 0.6, respectively, both of them beingrules. On the other hand, the difference is reflected on the
smaller than unity. Note thag/D is independent of the en- fluctuation, as seen in the strength distributitive histogram
ergy. Thus, the existence of the intermediate structure magf strengths Moreover, we detected the intermediate struc-

be explained also from the semiclassical point of view. ture (i.e., typical energy scalgsven in the chaotic case
(a) k=0.2 (b) k=0.6
900 T T T 900 T T v
800 1 800
700F 1 700+
600r 1 600 FIG. 11. The NPCN(Y for basis statee)
Nec 50| pe 5001 belonging to the symmetry clags for k=0.2(a)

and 0.6(b). Horizontal axis shows the level num-
ber of the basis stater). Cross points correspond
to the basis states typ6,m)es.

400} 400t

300t 300}

200t 200}

100} ¥

0 200 400 600 800 10.00 12.001400 C0 200 400 600 800 1000 1200 1400
Basis State Number Basis State Number
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which cannot be expected for the random-matrix model. Wehe transition connecting states with different symmetry
found that the existence of the intermediate structure is duelasses may also occur at same time. It is well known that the
to the fact that the spreading width of the doorway states isevel spacing statistics drastically changes when we consider
smaller than the level spacing of the doorway states, and alspe levels belonging to different symmetry classes simulta-
indicated its relation to the scar phenomenon. It would bQ]eou5|y_ Thus, it is also interesting to see what happens for
intel’esting to Study this structure from a different pOint Ofthe response function to the probe Connecting different Sym_

view, e.g., the semiclassical theory of respong&3-13
based on the periodic orbits.

In this paper for the sake of simplicity we restricted the

metry classes.

The authors thank M. Matuso for valuable discussions.
discussion to the transitions between the states belonging fthey thank also P. Schuck for a discussion about the semi-

the same symmetry class. In the realistic situation, howevexlassical description of response functions.
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