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Response function of an irregular oscillator
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Properties of the response functions for a two-dimensional quartic oscillator are studied based on the
diagonalization of the Hamiltonian in a large model space. In particular, response functions corresponding to
a given momentum transfer are studied for different values of the coupling parameter in the Hamiltonian. The
latter controls regular or chaotic nature of the spectra and eigenstates of the system. Fluctuation properties of
the energy-strength correlation of the response are investigated. Even when the statistical properties of the
system indicate an almost completely chaotic character, there remains a typical structure in the response
function similar to that in the regular system. The nature of this structure is studied in some detail.
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I. INTRODUCTION

Quantum-mechanical manifestations of dynamical prop
ties of a system which classically possesses a chaotic c
acter have been intensively studied@1,2#. Level statistics
which has a long history in nuclear physics as described
the random-matrix theory@3,4# is now a favorable play-
ground in the discussion of a transition from a regular~inte-
grable! to a chaotic character of a quantum system. Toge
with numerical studies on model systems, analytic investi
tion has been made based on semiclassical trace formula@5#.
Wave functions of a system which is classically chaotic ha
also been investigated: Statistical theory predicts that the
plitude distributions show the Porter-Thomas distributi
@6#, which was then numerically demonstrated to hold
model chaotic systems. Contrary to the naive expectat
however, the profile of the wave function for a chaotic sy
tem is not entirely structureless: For instance, the Hus
representation of a wave function in the chaotic regime
quently suffers from ascar of classical periodic orbits@7#.
Although considerable progress has since been made,
still an important issue to clarify the characteristic of eige
states and its matrix elements for systems which are cla
cally irregular or chaotic.

It is the purpose of the present paper to study ano
aspect of the wave functions for a system which show
transition from an integrable to a chaotic character: We st
response functions of the system, i.e., transition-matrix
ments as a function of energy. Statistical properties of
distribution of transition-matrix elements have been stud
@8–10#, and it was shown, in particular, that the distributio
becomes a Porter-Thomas type for chaotic systems. The
proach proposed in Ref.@10# has since been developed
elucidate the role of periodic orbits and was extended
various systems including the response of mesoscopic
tems to realistic probes@11–14#. These studies are based o
the semiclassical framework, and focus mainly on the
sponses to long-wavelength probes. Semiclassical studie
response functions have also been done in a different fra
work @15#, which concentrate on their smooth behavior b
not much on fluctuations.

In this paper, we study a model system using a large sp
1063-651X/2001/63~2!/026207~10!/$15.00 63 0262
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diagonalization and calculating response functions for
operators which probe the system with a variable wa
length, or momentum transfer. In particular, we put an e
phasis on which aspect of the response function reflects
regular or the chaotic character of the system. We also wo
like to study a structure in the response function for a sys
in a chaotic regime which however is not expected to oc
in the statistical random-matrix theory. Although we are he
concerned with the properties of response functions wh
show up in a model system, they will also be interesting
realistic applications, as this response is similar to the e
tation cross section for, e.g., electron scattering in the pla
wave Born approximation. Thus it is hoped that the pres
study may provide insight into the understanding of colle
tive states such as nuclear giant resonances embedde
complicated many-particle many-hole states as studied
nuclear reactions.

The main content of the paper is as follows: In the ne
section we summarize classical and quantum-mechan
properties of the model Hamiltonian and fix values of t
relevant parameters. In Sec. III we study response funct
first for a long-wavelength probe, and then for the pro
characterized by a given momentum transfer. We study
fluctuation properties of the response functions, concent
ing especially on the similarity or the difference for the reg
lar and the chaotic systems. The accuracy of the calcula
has been checked against sum rules. The final section is
voted to a summary.

II. BASIC INGREDIENTS OF THE MODEL

In order to study the response functions for a syst
which is capable of showing regular as well as chaotic pr
erties, we adopt the following Hamiltonian as a model,

H5
1

2
~px

21py
2!1

1

2
~x41y4!2kx2y2. ~1!

This model Hamiltonian has been adopted by a numbe
authors for the studies of level statistics or wave functio
@16–20#. It was also employed as a model for a backgrou
system in the studies of the fluctuation properties of stren
©2001 The American Physical Society07-1
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functions@21#. Let us first briefly summarize classical pro
erties of the model, which have been studied in detail
Meyer@17#. The Hamiltonian~1! possesses a dynamical sca
ing property in the sense that the classical phase-space s
ture at one energy is mapped into another by a simple sca
of the coordinates and momenta. It has a high symm
called C4v : The Hamiltonian is invariant with respect to
reflection about thex axis, y axis, and also about the linex
5y. Furthermore, by rotating 45° in thex-y plane, the
Hamiltonian is mapped into the one with a coupling const
k852(31k)/(12k). As the system becomes unbound
from below for k.1, we have only to consider the rang
@21,1# for the coupling constantk. Meyer @17# showed that
for largek values (>0.4) the classical phase-space struct
is almost completely chaotic, while for smallk the system
becomes regular. In the following calculations we adopt t
typical values of the parameter:k50.2 and 0.6. They corre
spond to quasi-integrable and fully chaotic systems, resp
tively. For instance, fork50.6 a single trajectory fills up
almost 90% of the available phase space, while fork50.2
the fraction of the phase space covered by irregular orbit
only 25% in typical cases@17#.

To study quantum-mechanical properties of the eig
states of the Hamiltonian~1!, we follow the procedure essen
tially of Zimmermanet al. @18#: The Hamiltonian is diago-
nalized within a truncated model space spanned by a se
suitable harmonic-oscillator basesunx ,ny&, wherenx ,ny de-
note the numbers of oscillator quanta in thex and y direc-
tions. In the following we take the unit\51. The frequency
v0 of the harmonic-oscillator basis is determined so as
minimize trH in the adopted model space. The obtained v
ues of v0 are 7.51(k50.2) and 7.13(k50.6). The Hamil-
tonian matrix can be decomposed into submatrices due to
C4v symmetry. As in Ref.@19# we take up four classes of th
one-dimensional representation which are labeled
A1 ,A2 ,B1 ,B2 according to their symmetry properties und
reflection on the axes and diagonals in thex-y plane @17#.
~For instance,A1 is symmetric under both reflections.! The
model space is spanned by the bases with 0<nx1ny<300,
which gives the dimension of each of the submatrices
5776,5625,5700,5700. The diagonalization has been
formed for each submatrix. Study of the nearest-neigh
spacing distribution confirms the character of the syst
suggested by the classical phase-space structures, i.e
Poisson-like distribution fork50.2 and the Wigner distribu
tion for k50.6 within each symmetry class. We also co
firmed that the amplitude distribution of the wave functio
for k50.6 show the Porter-Thomas distribution except fo
singular peak at zero.

In the following the results of the calculation will b
shown for the states which belong to the symmetry classA1.
The results are similar for other symmetry classes.

The basis stateun1 ,n2)ES belonging to the classA1 is
written as

un1 ,n2)ES5A11dn1n2

2
~ un1 ,n2&1un2 ,n1&), ~2!

wheren1 and n2 are even integers andn1<n2. Because of
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the selection rule, the relevant part of the operator wh
contributes to the matrix element of the response should h
the definite symmetry property. It should be noted th
among the 5776 wave functions of the classA1, those having
very large energies are not quite reliable because of the l
tation in the basis states. This is especially so when the
sponse functions with large momentum transferq are con-
cerned. We may make an estimate for the range of valid
by comparing the obtained level density with the semiclas
cal one. The comparison suggests that the maximum reli
energy isE51000– 1500, depending on the values of t
parameterk in Eq. ~1!. This maximum energy is contraste
with the largest energy eigenvalueE.3000 obtained by the
diagonalization. This limits the maximum value of the m
mentum transfer of the probe adopted below to be aro
q.50, where the corresponding ‘‘quasielastic peak’’ li
aroundEpeak5q2/2.1250. This is confirmed by the calcula
tion as shown later.

III. RESPONSE FUNCTIONS

We consider the response functions defined by

W( i )~V![(
j

u^ j uQ̂u i &u2d„V2~Ej2Ei !…, ~3!

whereQ̂ denotes a probing operator which connects the
tial and the final eigenstatesu i & and u j &. In many cases of
interest, the initial stateu i & is set to the ground state of th
system ug.s.& which belongs to theA1 symmetry class, in
which case the index~i! is dropped. The response functio
shows the distribution of the stateQ̂u i & over the energy
eigenstates$u j &%. If, for instance, the initial stateu i & has a
simple structure as in the ground state of the harmonic os
lator, the stateQ̂u i & and the response function will simpl
reflect the structure of the probe operatorQ̂. We consider
operators depending only on a single variable, sayx̂, to see
how the irregular behavior of the wave functions controll
by the parameterk may be reflected in the response functio
One may rewrite the response function~3! in the form of the
time-correlation function

W( i )~V!5
1

2pE2`

`

dt eiVt^Q̂„x̂~ t !…†Q̂„x̂~0!…& i , ~4!

where^& i denotes the expectation value in the initial stateu i &.
The probeQ̂ is written as a function of the operator

x̂~ t ![eiHt x̂e2 iHt5 x̂1 p̂xt2~ x̂32kx̂ŷ2!t21•••, ~5!

which is the solution of the Heisenberg equation of motio
In Eq. ~5! we show also a short time expansion in terms
the operators att50, e.g.,x̂(0)5 x̂. A corresponding semi-
classical expression for Eq.~4! has been fully utilized in the
analysis of Refs.@10–14#.

It is generally believed that the universal behavior of
dynamical system, i.e., if it is regular or chaotic, emerges
the fluctuation properties of the matrix elements of the o
7-2
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FIG. 1. Response to the probex̃2 for the ini-
tial stateu i 5500& as a function of the energyE in
log scale fork50.2 ~a! and 0.6~b!. Tics at the
upper part indicate positions of the energy eige
values.
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erators, while their expectation values are strongly depen
on the specific dynamics of the system. Although t
transition-matrix elements for a chaotic system are known
generically follow the Porter-Thomas distribution, th
energy-strength correlation such as the one contained in
sponse functions is certainly dependent on the specific p
erties of the dynamics governed by the Hamiltonian. In t
latter respect we note that the shape of the response fun
versus energy is constrained by a number of sum rules@22#.
Let us define

Sn
( i )~Q̂!5E

2`

`

dV VnW( i )~V!5(
j

~Ej2Ei !
nu^ j uQ̂u i &u2

~6!

for a given operatorQ̂. The integern may in general take
negative values~usually for i 5g.s. andj Þg.s.), in which
case the sum rule corresponds to the generalized suscep
ity of the system. By increasing the value ofn and subtract-
ing the lower moments, e.g., in the form of the shifted m
ment or of the cumulant, one can regain finer and fi
structure of the response function. Although one may reco
the response functions by Mellin-transforming the sum r
values, the use of sum rules lies in the fact that in some c
the sum becomes a simple matrix element in the initial st
The latter may be calculated precisely and serves as a c
for the accuracy of the calculation. The lown sum rules, in
particular, sometimes become insensitive to the detailed
namics and constrain the gross behavior of the respo
functions.

As a probeQ̂ of the response we first consider the ope
tor x̂2 with an arbitrary initial stateu i &. We then fix u i &
5ug.s.& and adopt the operatorQ̂q[eiqx̂ which is closely
related to an excitation of the system by an external pr
characterized by momentum transferq ~and length scale
1/q). The operatorx̂2 may be regarded as a long-waveleng
part of Q̂q , and is similar to theE2 operator of electromag
netic transitions. By changing the value ofq in Q̂q , one can
study in principle long as well as short distance structure
the matrix elements.

In the actual calculation we consider only the operat
symmetric under the reflection aboutx and y axes and also
about the linex5y, i.e.,
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Q̃[~Q̂!A1
5

1

4
@Q̂~ x̂!1Q̂~2 x̂!1Q̂~ ŷ!1Q̂~2 ŷ!#, ~7!

where the arguments are explicitly written to show the d
pendence on the coordinates. For the initial stateu i & in the
classA1 this implies that in Eq.~3! only the statesj belong-
ing to theA1 symmetry class contribute.

A. Response to thex̂2 probe

We first study the response function for thex̂2 probe. A
typical example of the response to this probe is given in F
1. Here we show the responseW( i )(V5E2Ei) for the i
5500th initial state as a function of the energyE for k
50.2 and 0.6. For other initial states the main features
similar. We immediately see that the response consists
three clusters of strengths for bothk50.2 and 0.6: the larges
strength lies atE5Ei with almost no other strength close t
this peak, while two other clusters are located aroundE
5Ei6D, whereD is slightly less than 2v0, the expected
value for a simple harmonic oscillator. Fork50.2, the
strengths are concentrated on a few states, while stren
are distributed over some energy range fork50.6. We now
introduce creation and annihilation operatorsax

† , ax , etc.,
of the oscillator quanta with frequencyv0, and decompose
the operatorx̃2 as

x̃25D01D2
†1D2 ; D0[

1

2v0
~ n̂x1n̂y11!,

D2
†[

1

4v0
~ax

†21ay
†2!. ~8!

One may then be tempted to assign theE5Ei peak to the
response to the operatorD0, and two other clusters aroun
E5Ei6D to the operatorsD2

† andD2, respectively. Figures
2~a! and 2~b! show the response to the operatorD0 for k
50.2 and 0.6, respectively. Although the stateD0u i & is not
proportional tou i &, the fragmentation of the strength is re
stricted to only a few states in both cases. More importan
the mixing in the stateD2

†u i &. Figures 2~c! and 2~d! show the
response to the operatorD2

† for the i 5500th state. The dis-
tribution of strengths is considerably different betweenk
7-3
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FIG. 2. Response to the operatorD0 for the
initial stateu i 5500& as a function of the energyE
in log scale fork50.2 ~a! and 0.6~b!, and the one
for the operatorD2

† for k50.2 ~c! and 0.6~d!.
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50.2 andk50.6 cases. Strengths fork50.2 are seen to con
centrate on a few states, while those fork50.6 are distrib-
uted over many states.

The above features may be quantified by studying
number of principal components~NPC!. The NPC for a nor-
malized stateua& in terms of a complete set of orthonorma
ized states$u j &% is defined as

Npc
(a)[S (

j
~^ j ua&!4D 21

. ~9!

The NPC becomes unity when the strengths are concentr
in a single eigenstate, while becomesNtot when the strengths
are equally distributed over the wholeNtot eigenstates. Fig-
ure 3 shows the NPC of the stateD0u i & ~with a suitable
normalization! for each eigenstateu i & as a function ofEi ,
where the set$u j &% has been taken to be the eigenstate of
Hamiltonian. The NPC takes values 1;1.5 in most cases
02620
e

ted

e

and decreases as the energy increases. General trend
much different fork50.2 andk50.6. The situation is dras
tically different if we study the NPC for the stateD2

†u i &
~again normalized! as seen in Fig. 4. Fork50.2, the NPC
remains small and does not show a marked energy de
dence, while fork50.6, the NPC shows a rapid increase a
function of energy and takes a quite large value. We th
find that theD2(D0) part of the operatorx̃2 is sensitive~in-
sensitive! to the characteristic changes in the dynamics g
erned by the parameterk.

There is another measure to see the difference betw
the two cases,k50.2 andk50.6, which can be obtained
from the response function associated withx̃2. In Fig. 5 the
fraction of strengths~omitting the one forE5Ei) exhausted
by two major states carrying largest strengths for each in
stateu i & is plotted againstEi . For k50.2 more than 60% of
the total strengths is exhausted by the two major states
the distribution of the fraction is almost independent of t
FIG. 3. The NPCNpc
( i ) for the stateD0u i & as a

function of the energy of the initial eigenstateEi

for k50.2 ~a! and 0.6~b!.
7-4
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FIG. 4. Same as Fig. 3 but forD2
† .
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initial energyEi , while for k50.6 they carry less than 50%
and this fraction decreases as a function of the initial s
energy. Since the dominant part of the strength associ
with the operatorD0 is contained in the initial stateu i & and is
omitted here, Fig. 5 shows the characteristics for the
sponse to the operatorD2

† ~and D2) in accordance with the
results from NPC.

These studies imply that it depends strongly on the cho
of the probe whether the difference in the character of
dynamics, namely regular or chaotic, may be easily see
the response function. In the present case, the differenc
the dynamics is not apparent for the probeD0;x21px

2 ,
while it becomes quite significant forD2;x22px

2 which is a
probe, in a sense, orthogonal to the unperturbed oscill
Hamiltonian;D0. The response function for the probex̃2

shows both characteristics.

B. Response to the probeQ̂q

We now consider the response function forQ̂q5eiqx̂. We
fix here the initial state to be the ground state. In this case
response is closely related to the situation of physical inte
such as the inelastic electron scattering from the target in
ground state, whereq gives the momentum transfer on th
target. The symmetrized probe forQ̂q is given by Q̃q

[(Q̂q)A1
5 1

4 (eiqx̂1e2 iqx̂1eiqŷ1e2 iqŷ). The response func

tions W(q,V[E2Eg.s.) ~for Q̂q) andW̃(q,V) ~for Q̃q) are
calculated in terms of the elementary matrix elem
Qnm(q)[^nueiqx̂um& for a one-dimensional harmonic osci
lator between the states with quantan andm, which is given
by
02620
te
ed

-

e
e
in
in

or

e
st
e

t

Qnm~q!5 i ae(1/2)zz(1/2)aA n!

~n1a!!
Ln

a~z! ~m>n!,

~10!

wherea[m2n, z[q2/2v0 and Ln
a(z) denotes the associ

ated Laguerre polynomial. The functionsQnm(q) are calcu-
lated from recursion relations.

We consider severalq values corresponding to differen
resolution of the probe, the smallq limit being related to the
long-wavelength probex̂2 above. On the other hand, fo
large q values the operator resolves a fine structure of
system and the main strength of the response lies at
energies. If we use the short-time expansion in Eq.~5! at this
high V region, we can rewrite Eq.~4! for the probeQ̂q using
the Baker-Campbell-Hausdorff formula as

W~q,V!.
1

2pE dt ei (V2q2/2)t^e2 iqp̂xt1•••&g.s., ~11!

where the dots denote operators with higher powers oft. The
expression shows that the response is peaked at the q
elastic energyq2/2 and has a width increasing withq and
with, e.g., the momentum spread in the ground state. T
holds precisely for a simple harmonic-oscillator Ham
tonian, while in general is modified by anharmonicity e
fects. The limiting form of response at largeq has been used
to extract momentum distribution of complex system
terms ofy-scaling analysis@23#. In our case, as noted earlie
the model space of diagonalization limits the value ofq
around 50 with the corresponding limit;1/q in the resolu-
tion of the wave function. This is much smaller than t
ch
FIG. 5. The fraction of thex̃2 strengths~omit-
ting the one forE5Ei) carried by the two major
states to the total strengths is plotted for ea
initial state u i & as a function of the initial-state
energyEi .
7-5
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FIG. 6. Response functionW̃(q,E) for k
50.2 atq510 ~a!, 30 ~c!, and 50~e! and for k
50.6 at q510 ~b!, 30 ~d!, and 50~f!. Note the
changes in the scale of the vertical axis.
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length parameter 1/Av0 of our oscillator basis. For the qua
tic oscillator the length scale will be modified from th
simple oscillator value. One may define the characteri
length scale in the ground state byx̄g.s.[(^g.s.ux̂2ug.s.&)1/2.
Calculated values ofx̄g.s.

21 are 1.64 fork50.2 and 1.57 for
k50.6. Thus the operator at, sayq520, probes already a
fairly fine structure of the system compared with the len
scale of the ground state. The fact that the stateQ̂qug.s.& has
an oscillation length scale 1/q also explains the occurrence o
the quasielastic peak: The typical oscillation length scale
the harmonic-oscillator wave function at energyE;nv0 is
A^x2&/n;1/AE which becomes;1/q in the region E

;q2/2. Thus, the stateQ̂qug.s.& will have the largest overlap
with the states in the quasielastic region producing a pea
the response.

Let us now consider the sum rules. Lown values of the
sum Sn[Sn

(0)(Q̂q) for the unsymmetrized probe are expli
02620
ic

h

f

in

itly calculated to give S051, S15 1
2 q2, S25 1

4 q2(q2

1 8
3 Eg.s.), etc., where the last sum rule is obtained from t

virial theorem. For the symmetric probe the sumS̃n

[Sn
(0)(Q̃q) is not analytically obtained but is given by th

expectation values as

S̃05
1

4
^@11cosq~ x̂1 ŷ!#@11cosq~ x̂2 ŷ!#&g.s.,

S̃15
1

16
q2^22cos 2qx̂2cos 2qŷ&g.s., etc. ~12!

It is useful to consider the limiting values forq→0 or `:

S̃0→1, S̃1→
1

8
q4^x̂21 ŷ2&g.s.: for q→0, ~13!
7-6



s
as

RESPONSE FUNCTION OF AN IRREGULAR OSCILLATOR PHYSICAL REVIEW E63 026207
FIG. 7. Strength distributionP(S1/2) of the

matrix elementS[u^ j uQ̃qug.s.&u2 at q530 for k
50.2 ~a! and 0.6~b!. Strengths are normalized a
Eq. ~16!. Dashed line shows the Porter-Thom
distribution.
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S̃0→
1

4
, S̃1→

1

8
q2: for q→`, ~14!

where the values atq→` are obtained under the assumpti
that the wavelength 1/q is much smaller than the typica
length scale of the ground-state wave function. These va
are used to check the accuracy of the calculation within
model space, especially the one at largeq which requires the
matrix elements Eq.~10! with largen. Note that these value
are almost independent ofk, and the numerical calculatio
confirms that thek dependence is small indeed. It turned o
that the limiting values~14! for the sum rule are satisfie
already atq.10. In view of Eq.~12! this result implies that
the ground-state expectation values of cosqx̂, etc., are almost
zero, i.e., the resolution atq.10 is already sufficiently fine
for the ground state in accordance with the estimate gi
above. For highern values the dependence ofS̃n on k is
expected to become larger. Thus the gross structure of
response such as the total strengthS̃0 and average energ
S̃1 /S̃0 is rather insensitive to the values ofk. Detailed struc-
ture related to highn values ofS̃n should reflect the dynam
ics.

Figure 6 shows the response functionW̃(q,V) at q510,
30 and 50. The gross structures at a givenq are similar for
both k50.2 and 0.6, and follow the behavior suggested e
lier in this section: Not only the central energy followsV
5q2/2 but the width of the response increases almost
early withq. This should come out exactly from the sum ru
if one had employed an unsymmetrized probeQ̂q . Fine
structure of the response, on the other hand, is quite diffe
02620
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for the two cases. Fork50.2 the response has a rather simp
regular structure: atq530, for instance, the response is
superposition of a few structures with different sizes, each
which is centered aroundq2/25450 and is similar to the
response of a harmonic oscillator given by

Who~q,V!5(
n

d~V2nv0! f nS q2

2v0
D , f n~z![

1

n!
zne2z.

~15!

In fact, by inspecting the wave functions one finds that th
structures are related to the strong transition-matrix elem
of uncoupled~i.e., k50) quartic oscillators which are inte
grable. In contrast, fork50.6 the simple structure disappea
and the values of the strength change drastically from
state to the other, although one can still see even atq550 a
structure of the regularly spaced spikes as seen fork50.2.

For chaotic systems such as represented by rand
matrix theories, the amplitude distribution of wave functio
or the matrix element distribution of an operator is known
follow the Porter-Thomas distribution. This may be co
trasted to regular systems, where in many cases the qua
number imposes a selection rule of allowed transitions. O
result of response functions is in accordance with this
neric behavior as far as the energy-strengths correlatio
disregarded. In Fig. 7 we show the strength distribution
the response function fork50.2 and 0.6 atq530. For k
50.6 the distribution follows the Porter-Thomas form give
by the dashed line and is quite different from that fork
50.2.

The question then arises: What is the nature of the p
sisting regular structure in the response functions of Fig
q.
FIG. 8. The normalized response function E
~16! at q530 for k50.2 ~a! and 0.6~b!. Compare
with the responses atq530 shown in Fig. 6.
7-7
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FIG. 9. Smoothed correlation functionC(d i )
for the normalized response function to the pro

Q̃q with q530 as a function of the level numbe
displacementd i for k50.2 ~a! and 0.6 ~b!.
Smoothing widthD i 54 is adopted.
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for k50.6. This structure becomes more visible if one int
duces a normalized response function defined by

Wnormalized~q,V![
W~q,V!

W̄~q,V!
r̄~V!, ~16!

whereW̄ and r̄ are, respectively, the response and the le
density smoothed over energies. For the smoothing we
ployed the method of Strutinsky@24# with the smoothing
width of 20. This normalization procedure removes the gr
structure effect of the response as constrained by the
order sum rules and enhances the embedded fine stru
@21#. Figure 8 shows the normalized response fork50.2 and
0.6. They show that the strengths in the regular spikes
k50.2 are mostly redistributed fork50.6 to produce smalle
and smaller strengths to fill up the background, although
can still see the equidistant structure. The latter may
called an intermediate structure following Ref.@25#. This
energy-strength correlation in the response function has b
washed out in the strength distribution.

The presence of an intermediate structure can be dete
also in the response correlation functionC(e) defined by

C~e![E dE W̃~q,E!W̃~q,E1e!. ~17!

For equidistant structures such as the one for the free
sponse~15!, the correlation function gives again the regu
pattern with the same spacing, e.g.,

Cfree~e!5 (
n,n8

d„e2~n82n!v0…f n~z! f n8~z!

5E dt

2p
ei ete2z(12cosv0t), ~18!

with z[q2/2v0 and f n of Eq. ~15!. Figure 9 shows the cor
relation function for the response function atq530. In the
actual calculation we used the normalized response func
~16! in order to remove the gross shape effect and used
level number displacementd i instead of the energy displace
mente. The resultant correlation function was then smooth
with a smoothing widthD i 54. We find the oscillator pattern
arising from the intermediate structure in the response fu
tion for bothk50.2 and 0.6.
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To understand why there still remains the intermedi
structure even in the chaotic case, let us investigate the
ture of the peak levels in some detail. We first pick up t
peak levels carrying the largest strength among neighbo
levels in the response function. Fork50.2 the assignment o
peak levels can be done without difficulty, while fork50.6
there may be an ambiguity. The qualitative results of
following analysis are, however, independent of this am
guity.

We first studied the NPC’s of these peak levels in ter
of the basis states@i.e., u j &5un1 ,n2)ES in Eq. ~2!#, and found
that they are markedly smaller than NPC’s for other leve
This implies that the mixing of the basis states in these p
levels is smaller than other states. The nature of the p
levels may become clear from Fig. 10, where we plot
quantity

An
( i )[^ i uun̂x2n̂yu/~ n̂x1n̂y!u i &. ~19!

Here, black points correspond to the peak levels and b
indicate the average values over neighboring levels. Fok
50.2, the values ofAn

( i ) for peak levels are nearly 0.9, almo
twice of those for other levels. Fork50.6, although it is not
so evident as fork50.2, the values for peak levels are larg
than the average. These facts strongly indicate that the p
levels are associated with the basis states of the t
u0,m)ES, although considerably affected by the mixing wi
other states fork50.6. In fact, these basis states are the o
states excited by the probeQ̃q for a simple oscillator Hamil-
tonian.

We may study the above results from the opposite dir
tion. In Fig. 11 we show the NPC of Eq.~9! for the basis
state ua&[un1 ,n2)ES by taking the eigenstatesu i & of the
Hamiltonian for the statesu j & in Eq. ~9!. The abscissa is the
basis numbera, and the basis state typeu0,m)ES is denoted
by crosses. For bothk values the basis states of the typ
u0,m)ES have the smallest NPC values, which shows t
these basis states have the smallest spreading width ca
by the mixing with other basis states. Thus the fact that th
remains an intermediate structure in the response func
may be restated in the doorway state picture@26#: The probe
Q̃q excites first the doorway statesu0,m)ES which will then
mix with other states causing the spreading of the streng
As the spreading width for these specific states are sma
7-8
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FIG. 10. The quantityAn
( i ) for k50.2 ~a! and

0.6 ~b!. Black points denote the peak levels fo

the probeQ̃q with q530 and bars show the av
erage over neighboring levels.
t

al

ti
ha
e

rn

th

th
re

he
e

t

s

d
ng
-

a

nc-
ith
and

as
we
For
ent
dif-

-

the

egu-
otic

pal

a
he
the
sum
the

c-
e

than the level spacing between the doorway states, the in
mediate structure emerges even in the chaotic case.

Since the statesu0,m)ES may correspond to the classic
isolated periodic orbits along thex and y axis, the relation
between the intermediate structure in the response func
and the scar@7# may be an interesting problem. Suppose t
an initial wave packetuf(0)& is located at some point of th
closed orbit having the periodT. The wave packet will then
semiclassically evolve along the closed orbit and will retu
to the initial position at each time intervalT. Accordingly,
the overlap of the wave packet at timet with the initial wave
packetu^f(0)uf(t)&u will have peaks att5nT, wheren is
an integer. The value of these peaks will decay due to
instability of the closed orbit like exp(2l/2t), wherel de-
notes the Lyapunov exponent of the closed orbit@7#. Taking
the stateQ̂qug.s.& as the initial wave packetuf(0)&, the re-
sponse function is nothing but the Fourier transform of
overlapu^f(0)uf(t)&u. Therefore, the intermediate structu
with peak level spacingD52p/T and the spreading width
of the peaksg5l may emerge in the response function if t
conditiong/D<1 is satisfied. In the present model, the p
riod of the closed orbits along thex and y axes does no
depend on the parameterk and is given by T

5(1/A2p)G( 1
4 )2.5.24 at E51/2. Numerical calculation

also shows that the Lyapunov exponents for these clo
orbits atE51/2 arel.0.53, and 0.92 fork50.2 and 0.6,
respectively. The values ofg/D are then given by 0.44 an
0.77 for k50.2 and 0.6, respectively, both of them bei
smaller than unity. Note thatg/D is independent of the en
ergy. Thus, the existence of the intermediate structure m
be explained also from the semiclassical point of view.
02620
er-

on
t

e

e

-

ed

y

IV. SUMMARY

In this paper we studied properties of the response fu
tions for a coupled quartic oscillator with several probes w
a special attention to the difference between the regular
the chaotic cases.

As a first example, we took the response to the probex̂2.
Since the response function is determined by the probe
well as the nature of the wave functions of the system,
must pay attention also to the character of the probe.
instance, the operators for which the diagonal matrix elem
becomes a main component are not adequate to see the
ference of the dynamics. For the operatorx̂2, it can be de-
composed like Eq.~8!, and the operatorD0 has such a char
acter, while for the operatorsD2

† and D2 the nondiagonal
matrix elements are important. Therefore, by removing
strengths associated with the operatorD0 we can see the
difference of the response between the chaotic and the r
lar cases, namely more spreading of strengths for the cha
case, which can be quantified with the number of princi
components.

Next, we considered the response to the probeQ̂q5eiqx̂.
The response function at a given momentum transferq is
related to the time-correlation function of the operator with
resolution 1/q in the coordinate space. It was shown that t
gross structure of the response function is similar for
chaotic and the regular cases as constrained by global
rules. On the other hand, the difference is reflected on
fluctuation, as seen in the strength distribution~the histogram
of strengths!. Moreover, we detected the intermediate stru
ture ~i.e., typical energy scales! even in the chaotic cas
-

FIG. 11. The NPCNpc
(a) for basis stateua&

belonging to the symmetry classA1 for k50.2 ~a!
and 0.6~b!. Horizontal axis shows the level num
ber of the basis stateua&. Cross points correspond
to the basis states typeu0,m)ES.
7-9
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which cannot be expected for the random-matrix model.
found that the existence of the intermediate structure is
to the fact that the spreading width of the doorway state
smaller than the level spacing of the doorway states, and
indicated its relation to the scar phenomenon. It would
interesting to study this structure from a different point
view, e.g., the semiclassical theory of responses@10–13#
based on the periodic orbits.

In this paper for the sake of simplicity we restricted t
discussion to the transitions between the states belongin
the same symmetry class. In the realistic situation, howe
s

-
,
ol

cs

02620
e
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is
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the transition connecting states with different symme
classes may also occur at same time. It is well known that
level spacing statistics drastically changes when we cons
the levels belonging to different symmetry classes simu
neously. Thus, it is also interesting to see what happens
the response function to the probe connecting different s
metry classes.
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